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Abstract. The so called f (R)-gravity could be, in principle, able to explain the acceler-
ated expansion of the Universe without adding unknown forms of dark energy/dark matter
but, more simply, extending the General Relativity by generic functions of the Ricci scalar.
However, a part several phenomenological models, there is no final f (R)-theory capable of
fitting all the observations and addressing all the issues related to the presence of dark en-
ergy and dark matter. Astrophysical observations are pointing out huge amounts of ”dark
matter” and ”dark energy” needed to explain the observed large scale structures and cosmic
accelerating expansion. Up to now, no experimental evidence has been found, at funda-
mental level, to explain such mysterious components. The problem could be completely
reversed considering dark matter and dark energy as ”shortcomings” of General Relativity.

1. Introduction

Although being the best fit to a wide range of
data, the ΛCDM model is affected by strong
theoretical shortcomings that have motivated
the search for alternative models Copeland
E.J., (2006). Dark Energy (DE) models mainly
rely on the implicit assumption that Einstein’s
General Relativity (GR) is the correct theory
of gravity. Nevertheless, its validity on the
larger astrophysical and cosmological scales
has never been tested, and it is therefore con-
ceivable that both cosmic speed up and Dark
Matter (DM) represent signals of a break-
down of GR. Following this line of thinking,
the choice of a generic function f (R) as the
gravitational Lagrangian, where R is the Ricci
scalar, can be derived by matching the data and
by the ”economic” requirement that no exotic
ingredients have to be added. This is the un-
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derlying philosophy of what are referred to as
f (R) gravity Capozziello S., (2008). It is worth
noticing that Solar System experiments show
the validity of GR at these scales so that f (R)
theories should not differ too much from GR at
this level Olmo G.J., (2005). In other words,
the PPN limit of such models must not vio-
late the experimental constraints on Eddington
parameters. A positive answer to this request
has been recently achieved for several f (R)
theories Capozziello S., (2005), nevertheless
it has to be remarked that this debate is far
to be definitively concluded. Although higher
order gravity theories have received much at-
tention in cosmology, since they are naturally
able to give rise to the accelerating expan-
sion (both in the late and in the early universe
Capozziello S., 2003), it is possible to demon-
strate that f (R) theories can also play a ma-
jor role at astrophysical scales Capozziello S.,
(2007, 2009). In fact, modifying the gravity ac-
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tion can affect the gravitational potential in the
low energy limit.

Provided that the modified potential re-
duces to the Newtonian one on the Solar
System scale, this implication could represent
an intriguing opportunity rather than a short-
coming for f (R) theories. In fact, a corrected
gravitational potential could offer the possibil-
ity to fit galaxy rotation curves without the
need of Dark Matter. In addition, one could
work out a formal analogy between the correc-
tions to the Newtonian potential and the usu-
ally adopted Dark Matter models. In order to
investigate the consequences of f (R) theories
on both cosmological and astrophysical scales,
let us first remind the basics of this approach
and then discuss dark energy and dark matter
issues as curvature effects.

2. Dark energy as a curvature effect

From a mathematical viewpoint, f (R) theories
generalize the Hilbert - Einstein Lagrangian as
L =

√−g f (R) without assuming a priori the
functional form of Lagrangian density in the
Ricci scalar. The field equations are obtained
by varying with respect to the metric compo-
nents to get Magnano G., (1987) :

f ′(R)Rαβ − 1
2

f (R)gαβ (1)

= f ′(R);µν
(
gαµgβν − gαβgµν

)
+ T M

αβ

where the prime denotes derivative with re-
spect to the argument and T M

αβ is the standard
matter stress - energy tensor. Defining the cur-
vature stress - energy tensor as

T curv
αβ =

1
f ′(R)

{
1
6

gαβ
[
f (R) − R f ′(R)

]
(2)

+ f ′(R);µν(gαµgβν − gαβgµν)
}
.

Eqs.(1) may be recast in the Einstein - like form
as :

Gαβ = Rαβ − 1
2

gαβR = T curv
αβ + T M

αβ/ f ′(R) (3)

where matter non - minimally couples to ge-
ometry through the term 1/ f ′(R). The pres-
ence of term f ′(R);µν renders the equations of

fourth order, while, for f (R) = R, the curvature
stress - energy tensor T curv

αβ identically vanishes
and Eqs.(3) reduce to the standard second -
order Einstein field equations. As it is clear,
from Eq.(3), the curvature stress - energy ten-
sor formally plays the role of a further source
term in the field equations so that its effect is
the same as that of an effective fluid of purely
geometrical origin.

However the metric variation is just one
of the approaches towards f (R) gravity: in
fact, one can face the problem also consider-
ing the so called Palatini approach (e.g. see
Ferraris M., 1994; Sotiriou T.P., 2007) where
the metric and connection fields are consid-
ered independent. Apart from some differences
in the interpretation, one can deal with a fluid
of geometric origin in this case as well. The
scheme outlined above provides all the ingre-
dients we need to tackle with the dark side of
the Universe. Depending on the scales, such a
curvature fluid can play the role of DM and
DE. From the cosmological point of view, in
the standard framework of a spatially flat ho-
mogenous and isotropic Universe, the cosmo-
logical dynamics is determined by its energy
budget through the Friedmann equations. The
cosmic acceleration is achieved when the r.h.s.
of the acceleration equation remains positive
(in physical units with 8πG = c = 1) :

ä
a

= −1
6

(ρtot + 3ptot) , (4)

where a is the scale factor, H = ȧ/a the Hubble
parameter, the dot denotes derivative with re-
spect to cosmic time, and the subscript tot de-
notes the sum of the curvature fluid and the
matter contribution to the energy density and
pressure. From the above relation, the acceler-
ation condition, for a dust dominated model,
leads to :

ρcurv + ρM + 3pcurv < 0→ wcurv < − ρtot

3ρcurv
(5)

so that a key role is played by the effective
quantities :

ρcurv =
8

f ′(R)

{
1
2

[
f (R) − R f ′(R)

] − 3HṘ f ′′(R)
}
, (6)
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Fig. 1. The Hubble diagram of 20 radio galaxies to-
gether with the “gold” sample of SNeIa, in term of
the redshift as suggested in Daly R.A., (2004). The
best fit curve refers to the f (R) - gravity model with-
out Dark Matter.

and

wcurv = −1 +
R̈ f ′′(R) + Ṙ

[
Ṙ f ′′′(R) − H f ′′(R)

]
[
f (R) − R f ′(R)

]
/2 − 3HṘ f ′′(R)

. (7)

As a first simple choice, one may neglect ordi-
nary matter and assume a power - law form f (R) =

f0Rn, with n a real number, which represents a
straightforward generalization of the Einstein GR
in the limit n = 1. One can find power - law solu-
tions for a(t) providing a satisfactory fit to the SNeIa
data and a good agreement with the estimated age
of the Universe in the range 1.366 < n < 1.376
Capozziello S., (2003). The data fit turns out to be
significant (see Fig. 1) improving the χ2 value and,
it fixes the best fit value at n = 3.46 when it is
accounted only the baryon contribute Ωb ≈ 0.04
(according with BBN prescriptions). It has to be re-
marked that considering DM does not modify the re-
sult of the fit, supporting the assumption of no need
for DM in this model. From the evolution of the
Hubble parameter in term of redshift one can even
calculate the Age of Universe. The best fit value
n = 3.46 provides tuniv ≈ 12.41 Gyr. It is worth
noting that considering f (R) = f0 Rn gravity rep-
resents only the simplest generalization of Einstein
theory. In other words, it has to be considered that
Rn - gravity represents just a working hypothesis as
there is no overconfidence that such a model is the
correct final gravity theory. In a sense, we want only
to suggest that several cosmological and astrophys-
ical results can be well interpreted in the realm of
a power law extended gravity model. This approach
gives no rigidity about the value of the power n, al-
though it would be preferable to determine a model
capable of working at different scales. Furthermore,

we do not expect to be able to reproduce the whole
cosmological phenomenology by means of a simple
power law model, which has been demonstrated to
be not sufficiently versatile.

For example, we can demonstrate that this
model fails when it is analyzed with respect to its
capability of providing the correct evolutionary con-
ditions for the perturbation spectra of matter over-
density Zhang P., (2006). This point is typically ad-
dressed as one of the most important issues which
suggest the need for Dark Matter. In fact, if one
wants to discard this component, it is crucial to
match the observational results related to the Large
Scale Structure of the Universe and the Cosmic
Microwave Background which show, respectively at
late time and at early time, the signature of the ini-
tial matter spectrum. As important remark, we note
that the quantum spectrum of primordial perturba-
tions, which provides the seeds of matter perturba-
tions, can be positively recovered in the framework
of Rn - gravity. In fact, f (R) ∝ R2 can represent a
viable model with respect to CMBR data and it is
a good candidate for cosmological Inflation. To de-
velop the matter power spectrum suggested by this
model, we resort to the equation for the matter con-
trast obtained in Zhang P., (2006) in the case of
fourth order gravity. This equation can be deduced
considering the conformal Newtonian gauge for the
perturbed metric Zhang P., (2006) :

ds2 = (1 + 2ψ)dt2 − a2(1 + 2φ)Σ3
i =1(dxi). (8)

In GR, it is φ = −ψ, since there is no anisotropic
stress; in extended gravity, this relation breaks, in
general, and the i , j components of field equa-
tions give new relations between φ and ψ. In par-
ticular, for f (R) gravity, due to nonvanishing fR;i; j
(with i , j), the φ − ψ relation becomes scale de-
pendent. Instead of the perturbation equation for the
matter contrast δ, we provide here its evolution in
term of the growth index f = d ln δ/d ln a, that is
the directly measured quantity at z ∼ 0.15 :

f ′(a) − f (a)2

a
+

[
2
a

+
1
a

E′(a)
]

f (a) (9)

−1 − 2Q
2 − 3Q

· 3Ωm a−4

n E(a)2R̃n−1
= 0 ,

E(a) = H(a)/H0, R̃ is the dimensionless Ricci
scalar, and

Q = −2 fRR c2 k2

fR a2 . (10)

For n = 1 the previous expression gives the or-
dinary growth index relation for the Cosmological
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Fig. 2. Scale factor evolution of the growth index f : (left) modified gravity, in the case Ωm = Ωbar ∼ 0.04,
for the SNeIa best fit model with n = 3.46, (right) the same evolution in the case of a ΛCDM model. In the
case of Rn - gravity it is shown also the dependence on the scale k. The three cases k = 0.01, 0.001, 0.0002
have been checked. Only the latter case shows a very small deviation from the leading behavior.

Standard Model. It is clear, from Eq.(9), that such a
model suggests a scale dependence of the growth
index which is contained into the corrective term
Q so that, when Q → 0, this dependence can be
reasonably neglected. In the most general case, one
can resort to the limit aH < k < 10−3h Mpc−1,
where Eq.(9) is a good approximation, and non-
linear effects on the matter power spectrum can be
neglected.
Studying numerically Eq.(9), one obtains the growth
index evolution in term of the scale factor; for the
sake of simplicity, we assume the initial condition
f (als) = 1 at the last scattering surface as in the
case of matter-like domination. The results are sum-
marized in Fig.(2), where we show, in parallel, the
growth index evolution in Rn - gravity and in the
ΛCDM model.

In the case of Ωm = Ωbar ∼ 0.04, one can ob-
serve a strong disagreement between the expected
rate of the growth index and the behavior induced
by power law fourth order gravity models. These re-
sults seem to suggest that an extended gravity model
which considers a simple power law of Ricci scalar,
although cosmologically relevant at late times, is not
viable to describe the evolution of Universe at all
scales. In other words, such a scheme seems too sim-
ple to give account for the whole cosmological phe-
nomenology. In fact, in Zhang P., (2006) a gravity
Lagrangian considering an exponential correction to
the Ricci scalar f (R) = R + A exp(−B R) (with A, B
two constants), gives more interesting results and
displays a grow factor rate which is in agreement
with the observational results at least in the Dark
Matter case. To corroborate this point of view, one
has to consider that when the choice of f (R) is per-
formed starting from observational data (pursuing

an inverse approach) as in Capozziello S., (2005),
the reconstructed Lagrangian is a non - trivial poly-
nomial in term of the Ricci scalar. A result which
directly suggests that the whole cosmological phe-
nomenology can be accounted only with a suitable
non - trivial function of the Ricci scalar rather than a
simple power law function. As matter of fact, the re-
sults obtained with respect to the study of the matter
power spectra in the case of Rn - gravity do not inval-
idate the whole approach, since they can be referred
to the too simple form of the model.

3. Dark matter as a curvature effect

The results obtained at cosmological scales moti-
vates further analysis of f (R) theories. In a sense,
one is wondering whether the curvature fluid, which
works as DE, can also play the role of effective
DM thus yielding the possibility of recovering the
observed astrophysical phenomenology by the only
visible matter. It is well known that, in the low en-
ergy limit, higher order gravity implies a modified
gravitational potential. Therefore, in our discussion,
a fundamental role is played by the new gravita-
tional potential descending from the given fourth
order gravity theories we are referring to. By con-
sidering the case of a pointlike mass m and solv-
ing the vacuum field equations for a Schwarzschild -
like metric, one gets from a theory f (R) = f0Rn,
the modified gravitational potential Capozziello S.,
(2007) :

Φ(r) = −Gm
2r

1 +

(
r
rc

)β (11)
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where

β =
12n2 − 7n − 1
6n2 − 4n + 2

− (12)

−
√

36n4 + 12n3 − 83n2 + 50n + 1
6n2 − 4n + 2

which corrects the ordinary Newtonian potential by
a power - law term. In particular, this correction sets
in on scales larger than rc which value depends es-
sentially on the mass of the system. The corrected
potential (11) reduces to the standard Φ ∝ 1/r for
n = 1 as it can be seen from the relation (12).

The result (11) deserves some comments. As
discussed in detail in Capozziello S., (2007), we
have assumed the spherically symmetric metric and
imposed it into the field equations (1) considered
in the weak field limit approximation. As a result,
we obtain a corrected Newtonian potential which
accounts for the strong non-linearity of gravity re-
lated to the higher-order theory. However, we have
to notice that Birkhoff’s theorem does not hold,
in general, for f (R) gravity but other spherically
symmetric solutions than the Schwarzschild one
can be found in these extended theories of grav-
ity Capozziello S., (2007). The generalization of
Eq.(11) to extended systems is achieved by divid-
ing the system in infinitesimal mass elements and
summing up the potentials generated by each sin-
gle element. In the continuum limit, we replace the
sum with an integral over the mass density of sys-
tem taking care of eventual symmetries of the mass
distribution (see Capozziello S., (2007) for details).
Once the gravitational potential has been computed,
one may evaluate the rotation curve v2

c(r) and com-
pare it with the data. For extended systems, one has
typically to resort to numerical techniques, but the
main effect may be illustrated by the rotation curve
for the pointlike case, that is:

v2
c(r) =

Gm
2r

1 + (1 − β)
(

r
rc

)β . (13)

Compared with the Newtonian result v2
c = Gm/r,

the corrected rotation curve is modified by the ad-
dition of the second term in the r.h.s. of Eq.(13).
For 0 < β < 1, the corrected rotation curve is
higher than the Newtonian one. Since measurements
of spiral galaxies rotation curves signals a circular
velocity higher than those which are predicted on
the basis of the observed luminous mass and the
Newtonian potential, the above result suggests the
possibility that our modified gravitational potential
may fill the gap between theory and observations
without the need of additional DM.

It is worth noting that the corrected rota-
tion curve is asymptotically vanishing as in the
Newtonian case, while it is usually claimed that ob-
served rotation curves are flat (i.e., asymptotically
constant). Actually, observations do not probe vc up
to infinity, but only show that the rotation curve is
flat within the measurement uncertainties up to the
last measured point. This fact by no way excludes
the possibility that vc goes to zero at infinity. In or-
der to observationally check the above result, we
have considered a sample of LSB galaxies with well
measured HI + Hα rotation curves extending far be-
yond the visible edge of the system. LSB galax-
ies are known to be ideal candidates to test Dark
Matter models since, because of their high gas con-
tent, the rotation curves can be well measured and
corrected for possible systematic errors by compar-
ing 21 - cm HI line emission with optical Hα and
[NII] data. Moreover, they are supposed to be Dark
Matter dominated so that fitting their rotation curves
without this elusive component is a strong evidence
in favor of any successful alternative theory of grav-
ity.

Our sample contains 15 LSB galaxies with data
on both the rotation curve, the surface mass den-
sity of the gas component and R - band disk pho-
tometry extracted from a larger sample selected by
de Blok & Bosma de Blok W.J.G., (2002). We as-
sume the stars are distributed in an infinitely thin
and circularly symmetric disk with surface density
Σ(r) = Υ?I0exp(−r/rd) where the central surface lu-
minosity I0 and the disk scalelength rd are obtained
from fitting to the stellar photometry. The gas sur-
face density has been obtained by interpolating the
data over the range probed by HI measurements and
extrapolated outside this range. When fitting to the
theoretical rotation curve, there are three quantities
to be determined, namely the stellar mass - to - light
(M/L) ratio, Υ? and the theory parameters (β, rc). It
is worth stressing that, while fit results for different
galaxies should give the same β, rc is related to one
of the integration constants of the field equations.
As such, it is not a universal quantity and its value
must be set on a galaxy - by - galaxy basis. However,
it is expected that galaxies having similar properties
in terms of mass distribution have similar values of
rc so that the scatter in rc must reflect somewhat the
scatter in the circular velocities. In order to match
the model with the data, we perform a likelihood
analysis determining for each galaxy, using, as fit-
ting parameters β, log rc (with rc in kpc) and the gas
mass fraction1 fg. As it is evident considering the

1 This is related to the M/L ratio as Υ? = [(1 −
fg)Mg]/( fgLd) with Mg = 1.4MHI the gas (HI + He)
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Fig. 3. Best fit theoretical rotation curve superim-
posed to the data for the LSB galaxy NGC 4455
(left) and NGC 5023 (right). To better show the ef-
fect of the correction to the Newtonian gravitational
potential, we report the total rotation curve vc(r)
(solid line), the Newtonian one (short dashed) and
the corrected term (long dashed).

results from the different fits, the experimental data
are successfully fitted by the model (see Capozziello
S., (2007) for details). In particular, for the best fit
range of β (β = 0.80 ± 0.08), one can conclude that
Rn gravity with 2.3 < n < 5.3 (best fit value n = 3.2
which well overlaps the above mentioned range of
n fitting SNeIa Hubble diagram) can be a good can-
didate to solve the missing matter problem in LSB
galaxies without any Dark Matter.

At this point, it is worth wondering whether a
link may be found between Rn gravity and the stan-
dard approach based on Dark Matter haloes since
both theories fit equally well the same data. As a
matter of fact, it is possible to define an effective
Dark Matter halo by imposing that its rotation curve
equals the correction term to the Newtonian curve
induced by Rn gravity. Mathematically, one can split
the total rotation curve derived from Rn gravity as
v2

c(r) = v2
c,N(r) + v2

c,corr(r) where the second term is
the correction. Considering, for simplicity a spher-

mass, Md = Υ?Ld and Ld = 2πI0r2
d the disk total

mass and luminosity.

ical halo embedding a thin exponential disk, we
may also write the total rotation curve as v2

c(r) =

v2
c,disk(r) + v2

c,DM(r) with v2
c,disk(r) the Newtonian disk

rotation curve and v2
c,DM(r) = GMDM(r)/r the Dark

Matter one, MDM(r) being its mass distribution.
Equating the two expressions, we get :

MDM(η) = Mvir

(
η

ηvir

)
(14)

2β−5η
−β
c (1 − β)η

β−5
2 I0(η) −Vd(η)

2β−5η
−β
c (1 − β)η

β−5
2 I0(ηvir) −Vd(ηvir)

.

with η = r/rd, Σ0 = Υ?i0, Vd(η) =

I0(η/2)K0(η/2) × I1(η/2)K1(η/2)2 and :

I0(η, β) =

∫ ∞

0
F0(η, η′, β)k3−βη′

β−1
2 e−η

′
dη′ (15)

with F0 only depending on the geometry of the sys-
tem and “vir” indicating virial quantities. Eq.(14)
defines the mass profile of an effective spherically
symmetric Dark Matter halo whose ordinary rota-
tion curve provides the part of the corrected disk
rotation curve due to the addition of the curvature
corrective term to the gravitational potential. It is ev-
ident that, from an observational viewpoint, there is
no way to discriminate between this dark halo model
and Rn gravity.

Having assumed spherical symmetry for the
mass distribution, it is immediate to compute the
mass density for the effective dark halo as ρDM(r) =

(1/4πr2)dMDM/dr. The most interesting features of
the density profile are its asymptotic behaviors that
may be quantified by the logarithmic slope αDM =

d ln ρDM/d ln r which can be computed only numer-
ically as function of η for fixed values of β (or n).
As expected, αDM depends explicitly on β, while
(rc,Σ0, rd) enter indirectly through ηvir. The asymp-
totic values at the center and at infinity denoted as
α0 and α∞ result particularly interesting. It turns
out that α0 almost vanishes so that in the inner-
most regions the density is approximately constant.
Indeed, α0 = 0 is the value corresponding to models
having an inner core such as the cored isothermal
sphere and the Burkert model Burkert A., (1995).
Moreover, it is well known that galactic rotation
curves are typically best fitted by cored dark halo
models. On the other hand, the outer asymptotic
slope is between −3 and −2, that are values typical
of most dark halo models in literature. In particular,
for β = 0.80 one finds (α0, α∞) = (−0.002,−2.41),

2 Here Il and Kl, with l = 1, 2 are the Bessel
functions of first and second type.
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which are quite similar to the value for the Burkert
model (0,−3). It is worth noting that the Burkert
model has been empirically proposed to provide a
good fit to the LSB and dwarf galaxies rotation
curves. The values of (α0, α∞) we find for the best fit
effective dark halo therefore suggest a possible the-
oretical motivation for the Burkert-like models. Due
to the construction, the properties of the effective
Dark Matter halo are closely related to the disk one.
As such, we do expect some correlation between the
dark halo and the disk parameters. To this aim, ex-
ploiting the relation between the virial mass and the
disk parameters , one can obtain a relation for the
Newtonian virial velocity Vvir = GMvir/rvir :

Md ∝
(3/4πδthΩmρcrit)

1−β
4 r

1+β
2

d η
β
c

2β−6(1 − β)G
5−β

4

V
5−β

2
vir

I0(Vvir, β)
. (16)

We have numerically checked that Eq.(16) may be
well approximated as Md ∝ Va

vir which has the same
formal structure as the baryonic Tully - Fisher (BTF)
relation Mb ∝ Va

f lat with Mb the total (gas + stars)
baryonic mass and V f lat the circular velocity on the
flat part of the observed rotation curve. In order to
test whether the BTF can be explained thanks to
the effective Dark Matter halo we are proposing, we
should look for a relation between Vvir and V f lat.
This is not analytically possible since the estimate
of V f lat depends on the peculiarities of the observed
rotation curve such as how far it extends and the un-
certainties on the outermost points. For given values
of the disk parameters, we therefore simulate the-
oretical rotation curves for some values of rc and
measure V f lat finally choosing the fiducial value for
rc that gives a value of V f lat as similar as possible to
the measured one. Inserting the relation thus found
between V f lat and Vvir into Eq.(16) and averaging
over different simulations, we finally get :

log Mb = (2.88 ± 0.04) log V f lat + (4.14 ± 0.09)(17)

while a direct fit to the observed data gives
McGaugh S.S., (2005) :

log Mb = (2.98±0.29) log V f lat + (3.37±0.13) .(18)

The slope of the predicted and observed BTF are in
good agreement thus leading further support to our
approach. The zeropoint is markedly different with
the predicted one being significantly larger than the
observed one. However, it is worth stressing that
both relations fit the data with similar scatter. A
discrepancy in the zeropoint can be due to our ap-
proximate treatment of the effective halo which does
not take into account the gas component. Neglecting

this term, we should increase the effective halo mass
and hence Vvir which affects the relation with V f lat
leading to a higher than observed zeropoint. Indeed,
the larger is Mg/Md, the more the points deviate
from our predicted BTF thus confirming our hy-
pothesis. Given this caveat, we can conclude, with
confidence, that Rn gravity offers a theoretical foun-
dation even for the empirically found BTF relation.
Although the results outlined along this paper are
referred to a simple choice of fourth order gravity
models ( f (R) = f0Rn) they could represent an in-
teresting paradigm. In fact, even if such a model is
not suitable to provide the correct form of the matter
power spectra, and this suggests that a more compli-
cated Lagrangian is needed to reproduce the whole
dark sector phenomenology at all scales, we have
shown that considering extensions of GR can al-
low to explain some important issues of cosmologi-
cal and astrophysical phenomenology. We have seen
that extended gravity models can reproduce SNeIa
Hubble diagram without Dark Matter, giving sig-
nificant predictions even with regard to the age of
Universe. In addition, the modification of the grav-
itational potential which arises as a natural effect
in the framework of higher order gravity can rep-
resent a fundamental tool to interpret the flatness
of rotation curves of LSB galaxies. Furthermore, if
one considers the model parameters settled by the fit
over the observational data on LSB rotation curves,
it is possible to construct a phenomenological anal-
ogous of Dark Matter halo whose shape is similar
to the one of the Burkert model. Since the Burkert
model has been empirically introduced to give ac-
count of the Dark Matter distribution in the case of
LSB and dwarf galaxies, this result could represent
an interesting achievement since it gives a theoret-
ical foundation to such a model. By investigating
the relation among dark halo and the disk param-
eters, we have deduced a relation between Md and
V f lat which reproduces the baryonic Tully - Fisher.
In fact, exploiting the relation between the virial
mass and the disk parameters, one can obtain a re-
lation for the virial velocity which can be satisfac-
tory approximated as Md ∝ Va

vir. Even such a result
seems very intriguing since it gives again a theoret-
ical interpretation for a phenomenological relation.
As a matter of fact, although not definitive, these re-
sults on f (R) can represent a viable approach for
future investigations and in particular support the
quest for a unified view of the Dark Side of the
Universe that could be interpreted as gravitational
effects indeed.
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